Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a }}{ }^{*}$ Karl-Ludwig
Noble, ${ }^{\text {b }}$ Peter Bubenitschek ${ }^{\text {b }}$ and Henning Hopf ${ }^{\text {b }}$
${ }^{\mathbf{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.088$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-[8]Paracyclophan-4-ene-3,6-dione

The title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$, displays approximate twofold symmetry. The six-membered rings shows distortions typical of strained cyclophanes, but these effects do not extend to the bridges. The packing is determined by three hydrogen bonds of the type $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$.

Comment

The title enedione, (3), is useful as a starting material in cyclophane chemistry. Having investigated its chemical behaviour and spectroscopic data (Noble et al., 1984a,b), we now describe its crystal structure.

The molecule of (3) (Fig. 1) possesses approximate twofold symmetry, as can be seen from the torsion angles in Table 1. Of the usual features of strained cyclophanes (see e.g. Jones et al., 2002), it shows a flattened boat shape for the six-membered ring (atoms C9 and C12 both lie 0.106 (3) \AA out of the plane of $\mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 13, \mathrm{C} 14)$, with narrow ring angles at C 9 and C 12 . However, bond lengths and angles in the bridges $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 7-\mathrm{C} 8$ are normal for $s p^{3} \mathrm{C}$ atoms. Contacts involving the bridgehead atoms are C3..C12 2.800 (3) and C6..C9 2.834 (3) Å.

The double bond $\mathrm{C} 4=\mathrm{C} 5$ is significantly twisted, with a torsion angle $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ of $167.20(15)^{\circ}$.

The crystal packing involves three $\mathrm{H} \cdots \mathrm{O}$ contacts that could be considered as hydrogen bonds (Table 2). These connect the molecules in a three-dimensional network, a section of which is shown in Fig. 2. The hydrogen bond C1$\mathrm{H} 1 \cdots \mathrm{O} 1$ forms rings of graph set $R_{2}^{2}(10)$ in the regions z $\sim 0,1, \ldots$ and $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 2$ rings of the same set in the regions $z \sim 1 / 2,3 / 2, \ldots$; the two hydrogen bonds for which O 2 is the acceptor combine to form larger rings $R_{6}^{4}(18)$. There are no short contacts of the form $\mathrm{C}-\mathrm{H} \cdots C g$, where $C g$ is the ring centroid of C10,C11,C13,C14 (Jones et al., 2002); the shortest such contact is $\mathrm{H} 2 A \cdots C g 3.11 \AA(\mathrm{C}-\mathrm{H}$ normalized to $1.08 \AA$).

Experimental

[2](2,5)Furano[2]paracyclophane (1) was treated with bromine in methanol in the presence of potassium acetate to produce the bis-

Received 3 September 2002
Accepted 4 September 2002
Online 13 September 2002

Figure 1
The molecule of compound (3) in the crystal. Ellipsoids represent 30% probability levels. H atom radii are arbitrary.
ketal (2), which on hydrolysis with dilute sulfuric acid provided the title compound (3) (Cope \& Pawson, 1968; cf. Cram et al., 1966). Single crystals were obtained from ethanol.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$	$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=214.25$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{d} / n$	Cell parameters from 50
$a=11.164$ (3) A	reflections
$b=7.662$ (3) A	$\theta=10-11.5^{\circ}$
$c=13.063$ (4) \AA	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=101.84$ (3) ${ }^{\circ}$	$T=173$ (2) K
$V=1093.6$ (6) \AA^{3}	Prism, colourless
$Z=4$	$0.52 \times 0.42 \times 0.40 \mathrm{~mm}$
Data collection	
Nicolet $R 3$ diffractometer	$\theta_{\text {max }}=25.0^{\circ}$
ω scans	$h=-13 \rightarrow 2$
Absorption correction: none	$k=-9 \rightarrow 0$
2335 measured reflections	$l=-15 \rightarrow 15$
1913 independent reflections	3 standard reflections
1263 reflections with $I>2 \sigma(I)$	every 147 reflections
$R_{\text {int }}=0.025$	intensity decay: none

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.088$
$S=0.89$
1913 reflections
145 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0483 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{C} 2$	$1.551(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.554(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.327(2)$		
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2$	$109.33(14)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 14$	$117.95(18)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$110.32(15)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$117.95(17)$
$\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-45.7(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$86.32(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$91.75(18)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-42.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-141.63(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$100.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$167.20(15)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12-\mathrm{C} 13$	$101.53(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-142.65(17)$		

Figure 2
Packing of compound (3) in the crystal, viewed parallel to the c axis. Only those H atoms involved in H bonding (dashed bonds) are shown.

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.67	$3.633(3)$	163
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 7 A \cdots \mathrm{O}^{2 i}$	0.99	2.66	$3.613(3)$	161
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{2 i i}$	0.99	2.59	$3.553(3)$	164

Symmetry codes: (i) $1-x,-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $1-x, 1-y, 1-z$.
H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths (aromatic 0.95 , methylene $0.99 \AA$); $U(\mathrm{H})$ values were fixed at $1.2 \times U(\mathrm{eq})$ of the parent atom.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Cope, A. C. \& Pawson, B. A. (1968). J. Am. Chem. Soc. 90, 636-639.
Cram, D. J., Montgomery, C. S. \& Knox, G. R. (1966). J. Am. Chem. Soc. 88, 515-525.
Jones, P. G., Hillmer, J. \& Hopf, H. (2002). Acta Cryst. C58, o301-o304.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Noble, K.-L., Hopf, H., Ernst, L. (1984a). Chem. Ber. 117, 455-473.
Noble, K.-L., Hopf, H., Ernst, L. (1984b). Chem. Ber. 117, 474-488.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments,

Madison, USA.

